

# **Rosamond Corner Reflector Array**

UAVSAR 80 MHz Polarmetric L-band Image Sept, 2017



- 5 4.8 meter corners all 350 headings
- 23 2.4 meter corners 10 with 350 heading, 13 with 170 heading
  - 4 0.7 meter corners all 350 headings

## **Rosamond Corner Reflector Array**

3 sizes designed for 3 frequency bands

- 2.4 meter trihedral for L-band
  - L-Band:  $\lambda/10 = 2.4$  cm (0.9")
  - CR hole size 0.24 cm (0.09375")
    - 10x smaller than needed
- 4.8 meter trihedral for P-band
  - CR hole size 1.3 cm (0.5")
    - Still small enough for L-band
  - 48% open area for lighter weight
- 0.7 meter trihedral for Ka-band
  - Ka-band:  $\lambda/10 \sim 0.08$  mm
  - need solid structure

# **Rosamond Corner Reflector Array**

3 trihedral sizes designed for 3 frequency bands

| Target Band<br>(λ in cm) | Side<br>Length<br>(m) | Mesh Hole Size<br>(cm) | Max RCS<br>@ band<br>(dBsm) | Max RCS<br>@ L band<br>(dBsm) |
|--------------------------|-----------------------|------------------------|-----------------------------|-------------------------------|
| Ka (0.84)                | 0.700                 | 0 (solid reflector)    | 46.30                       | 17.25                         |
| L (23.8)                 | 2.438                 | 0.24 (<< 24/10)        | 34.16                       | 34.16                         |
| P (69.7)                 | 4.800                 | 1.30 ( < 24/10 also )  | 36.60                       | 45.92                         |



$$\sigma_{tri,max} \le \frac{4\pi a^4}{3\lambda^2}$$

### 4.8 meter Trihedral for P-band

Installed in May-June, 2012



#### 2.4 meter Trihedral for L-band

10 in 350 degree heading, 13 in 170 degree heading



### 0.7 meter Trihedral for Ka-band

4 installed in December 2015





# L-Band RCRA 2017 Range Residuals

With Once-Per-Flight Trop Estimate, and no changes to common delay.

Yaw variation from 2 to 15 degrees.



# **Not all CRs Have Same Location Accuracy**

Low Lake corners not as well determined as High Lake corners



# **Not all CRs Have Same Location Accuracy**

Low Lake corners not as well determined as High Lake corners





170 Heading Corners #s >= 4 sigma: 2.5 cms

350 Heading Corners #s >= 16 sigma: 3.6 cms

350 Heading Corners #s >= 23 sigma: 2.8 cms (these are the 4.8 meter CRs)

Resurvey CR #s in Dec 2017

170s: 00, 01, 02, 03, and 10

350s: 13,14,15

# Ka-Band RCRA 2017 Range Residuals

Yaw variation from 2 to 15 degrees.

Difference from 15dec02 survey to 16sep28 survey (cms)



KaBandCrs: 0.024 pixels (4 cms) sigma (excluding low angle outlier)

| CR# | East | North | Vertical |
|-----|------|-------|----------|
| 28  | 8.0  | -0.1  | -0.9     |
| 31  | 1.8  | 0.1   | -2.0     |
| 34  | 1.0  | 0.2   | -1.7     |
| 37  | -0.5 | -1.0  | -0.8     |

Uses single-freq. double-difference ambiguity resolution with Lambda/Z-transform



# **Measuring Corner Reflectors**

Using GPS (w/base station) and Laser for Precise Location of Center





Attach Laser Range Finder and Digital Tilt Meter to top of GPS pole To Measure Apex



#### **Radiometrics from L-band**

#### Uses 2.4 meter and 4.8 meter CRs



RCS sigma for HH: 0.57 dBsm RCS sigma for VV: 0.52 dBsm

#### **Radiometrics from P-band**

Uses only 4.8 meter CRs and Noise Diode Calibration



RCS sigma for HH: 0.18 dBsm RCS sigma for VV: 0.24 dBsm

<sup>\*</sup>This is with RCS2017 Antenna Pattern and not the AirMoss Antenna Pattern

#### Six Additional 0.7 Meter Reflectors in 2018

Currently only #28, #31, #34, #37 Deployed





| CR# | Latitude | Longitude | Elevation |
|-----|----------|-----------|-----------|
| 28  | 34.7989  | -118.0948 | 12.1      |
| 29  | 34.7997  | -118.0895 | 13.7      |
| 30  | 34.8005  | -118.0843 | 15.3      |
| 31  | 34.8012  | -118.0791 | 17.0      |
| 32  | 34.8020  | -118.0738 | 18.8      |
| 33  | 34.8029  | -118.0675 | 21.0      |
| 34  | 34.8035  | -118.0634 | 22.5      |
| 35  | 34.8043  | -118.0581 | 24.5      |
| 36  | 34.8050  | -118.0529 | 26.6      |
| 37  | 34.8058  | -118.0476 | 28.7      |

#### **Additional of Two PARCs in 2018**

#### Polarimetric Active Radar Calibrators



PARCs will provide UAVSAR with a 53.4 degree look for Rosamd\_17017 26.4 degree look for Rosamd\_35012

## Obtaining Locations of RCRA Locations

https://uavsar.jpl.nasa.gov/cgi-bin/calibration.pl

- Coordinates are available back to 1-jan-2000
- Rains in winter 2005-2006 flooded the Lake Bed
  - 25 % of the CRs were washed away
  - 50 % additionally required repositioning
- Periodic maintenance requires repositioning due to erosion
  - CR#18 was washed away this year but now available
  - CR#10 is TBD
- Revisit Lake Bed December 2017 to resurvey low # CRs and #10
- Lake Bed moving at 2.4 cms/year azimuth direction of 283 degrees
- Web Interface will account for repositioning and continental drift
  - Coordinates expressed in WGS-84 ellipsoid
  - Uses IGS14 Reference Frame



jpl.nasa.gov

©2017 California Institute of Technology. Government sponsorship acknowledged.

#### L-band HH-VV Phase Difference At CRs

Oct 2014 to Oct 2015



with *a priori* model of -0.3 degrees/look\_angle(degree) L-band RMS: 4.8 degrees

# **UAVSAR L-band Range Offsets to CRs**

170 degree Heading, Oct 2014 to Oct 2015





#### P-band HH-VV Phase Difference At CRs

HH-VV Phase from 4.8 M CR, 2015



Dynamic air pressure affects radiometrics due to the wing movement.





